Lecture 13: Randomized Matrix Multiplication
Description
This lecture focuses on randomized linear algebra, specifically on randomized matrix multiplication. This process is useful when working with very large matrices. Professor Strang introduces and describes the basic steps of randomized computations.
Summary
Sample a few columns of \(A\) and rows of \(B\)
Use probabilities proportional to lengths \(\Vert A_i \Vert \, \Vert B_i \Vert\)
See the key ideas of probability: Mean and Variance
Mean \(= AB\) (correct) and variance to be minimized
Related section in textbook: II.4
Instructor: Prof. Gilbert Strang
Instructor: | |
Course Number: |
|
Departments: | |
Topics: | |
As Taught In: | Spring 2018 |
Level: | Undergraduate |
Topics
Course Features
record_voice_over
AV lectures - Video
assignment_turned_in
Assignments - problem sets (no solutions)
equalizer
AV special element audio - Podcast