Lecture 12: Computing Eigenvalues and Singular Values
Description
Numerical linear algebra is the subject of this lecture and, in particular, how to compute eigenvalues and singular values. This includes discussion of the Hessenberg matrix, a square matrix that is almost (except for one extra diagonal) triangular.
Summary
\(QR\) method for eigenvalues: Reverse \(A = QR\) to \(A_1 = RQ\)
Then reverse \(A_1 = Q_1R_1\) to \(A_2 = R_1Q_1\): Include shifts
\(A\)'s become triangular with eigenvalues on the diagonal.
Krylov spaces and Krylov iterations
Related section in textbook: II.1
Instructor: Prof. Gilbert Strang
Instructor: | |
Course Number: |
|
Departments: | |
Topics: | |
As Taught In: | Spring 2018 |
Level: | Undergraduate |
Topics
Course Features
record_voice_over
AV lectures - Video
assignment_turned_in
Assignments - problem sets (no solutions)
equalizer
AV special element audio - Podcast